摘要:数据流中的关联规则在预测和在线分析系统中有重要应用.现有的研究大多集中在事务数据模型上,鲜有对数据...数据流中的关联规则在预测和在线分析系统中有重要应用.现有的研究大多集中在事务数据模型上,鲜有对数据项之间的关联规则挖掘.由于数据的实时性特点,用户又往往对新产生的数据所包含的信息更感兴趣。为了实时而准确地挖掘最近一段时间内数据项间的关联规则,提出了MARSW(mining association rules on sliding window)算法,利用滑动窗口模型对数据流进行关联规则挖掘.MARSW算法在给定的误差范围内,能够有效去除历史数据的影响,并以有限的空间代价快速挖掘大量数据间存在的关联规则.大量仿真实验结果表明,MARSW算法具有较高的效率和优良的可扩展性.显示全部