摘要: 酸度是评价砂糖橘品质的重要指标之一,为了消除光谱变量间的共线性影响、减少建模变量以提高校正速度,该文... 酸度是评价砂糖橘品质的重要指标之一,为了消除光谱变量间的共线性影响、减少建模变量以提高校正速度,该文应用连续投影算法(SPA)对砂糖橘总酸近红外光谱无损检测模型进行优化。利用连接点修正方法修正近红外光谱,结合学生化残差图和模型回归图剔除异常样本,利用SPXY(sample set partitioning based on joint x-y distances)方法划分样本集,最后利用SPA进行变量选择,比较SPA选择的变量建模和全光谱变量PLS模型的预测效果,并分析橘皮对总酸模型的预测精度的影响程度。结果表明,只用了全部2001个变量中的9个变量,整果测定酸度情况下的SPA-MLR模型和SPA-PLS模型的预测精度与全部变量PLS模型的预测精度相当,预测相关系数Rp分别为0.829470,0.837095和0.857299。去皮留果肉测定酸度情况下则优选了13个变量,其SPA-MLR模型和SPA-PLS模型的Rp分别为0.819430、0.825277,均比全光谱变量PLS模型的Rp(0.780146)高,SPA算法提高了去皮留果肉测定酸度情况下的模型预测精度。显示全部
摘要:在近红外光谱PLS定量模型的建立过程中训练集样本的选取和潜变量数的确定是十分重要的。因此,该研究以橘叶...在近红外光谱PLS定量模型的建立过程中训练集样本的选取和潜变量数的确定是十分重要的。因此,该研究以橘叶中橙皮苷的含量检测为例,分别比较了random sampling(RS),Kennard-Stone(KS),duplex,sample set partitioning based on joint x-y distance(SPXY)四种训练集样本的选取方法对模型的影响,以及留一交互验证法和蒙特卡罗法对潜变量数确定的影响。结果表明,SPXY法选取的训练集建立的模型优于其他三种方法,蒙特卡罗法能够较好地确定模型的潜变量数并有效地减少过拟合风险,所建模型的交互验证均方根,预测均方根及预测集相关系数分别为0.7681,0.7369,0.9752。显示全部