摘要:蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用...蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。显示全部