作 者: ;
机构地区: 中山大学中山医学院
出 处: 《生物医学工程研究》 2018年第4期531-535,共5页
摘 要: 癫痫发作预测的主要研究为检测发作前期状态。尽管癫痫发作预测研究众多,其准确率也在不断提升,但其应用于临床分析还为时过早,主要原因在于缺乏令人信服的统计检验和实验可重复性。基于此,本研究回顾了癫痫预测算法研究框架,从信号采集到性能评价等,着重于信号处理和信号识别,讨论提出优化癫痫预测模型框架,用于实现更准确可靠的发作预测。 Seizure detection employs algorithms that aim to detect preictal state.Although efforts for better prediction have been made,the translation of current approaches to clinical applications is still not possible due to the absence of statistical validation and reproducibility.Analysis and algorithmic studies provide evidence that transition to the ictal state is not random,with build-up leading to seizures,discussing a framework for improving and optimizing the epilepsy prediction model.
领 域: []