导 师: 贺前华; 张道勇
授予学位: 硕士
作 者: ();
机构地区: 华南理工大学
摘 要: 随着现代工业自动化技术的不断推进,人类社会已经开始提出“第四次工业革命”,计划进一步提升制造业的智能化水平及整体效率。交流伺服控制系统作为一种基础的工业自动化设备,目前被广泛地应用在高精度数控机床、机器人和其他广义的数控机械等领域,其发展水平也直接影响了智能化水平的高度。近年来,国内的自动化厂商虽已逐步掌握交流伺服控制单元的设计制造技术,形成了一定的产品系列和自主配套能力,但在产品性能、可靠性方面,与国外产品还存在一定差距,特别是在全数字化的高性能伺服驱动技术方面。国内传统的交流伺服控制系统一般采用DSP+PLD的硬件平台,DSP用于实现交流伺服电机的控制算法,PLD器件则多用于实现定制化的外设接口及I/O扩展等。而随着应用要求的不断提升,系统的复杂程度越来越高,处理器的负荷也越来越大,该方案开始出现“瓶颈”。要往高性能系统发展,就需要突破传统,尝试采取新的更优的方案。本文以实现一个具有实际工程价值的高性能交流伺服控制系统平台为目的,有针对性的进行如下研究及设计验证工作:(1)在研究了交流永磁同步电动机的模型及控制算法的基础上,出于可行性及产品化的考虑,采用DSP+FPGA的硬件架构,利用FPGA实现交流永磁同步电机的矢量控制,即对电机的“三环”控制中对实时性要求较高的电流环部分的相关算法,并进行了仿真及测试,利用FPGA对系统进行了硬件加速,分担了DSP的负担,使DSP可实现更多其他的优化算法成为可能;(2)重点研究高性能伺服控制系统中的两个关键技术,即电流采样及其模/数转换技术,以及位置反馈检测技术。本文采用了新型的Sigma-Delta型电流采样模/数转换方案,在不增加成本的条件下提高了电流采样的稳定性及有效精度;实现了尼康高分辨率绝对式光电编码器的接�
领 域: []