机构地区: 武汉大学数学与统计学院,湖北武汉430072
出 处: 《数学杂志》 2017年第5期1093-1100,共8页
摘 要: 本文研究了组织特异性蛋白质复合体的识别问题.利用蛋白质相互作用网络数据以及组织特异性基因表达数据构建组织特异性蛋白网络,利用多种代表性聚类算法对该网络进行聚类,并利用非负矩阵分解对聚类结果进行合并聚类,得到了组织特异性蛋白质复合体.结果表明,聚类效果得到明显提升,并且能识别出组织特异性蛋白质复合体. In this paper, we study the identification problem of tissue-specific protein complexes. By using a variety of typical clustering algorithm to cluster the network, we construct a tissue-specific protein-protein interaction network based on the protein-protein interaction net- works as well as the tissue-specific gene expression data, then merge the results with non-negative matrix factorization model to obtain tissue-specific protein complexes. The results show that clustering effect has been significantly improved, and can identify tissue-specific protein complexes.