机构地区: 北京电子科技职业学院自动化工程学院,北京100176
出 处: 《计算机科学》 2017年第8期280-284,289,共6页
摘 要: 在案例推理(Case-Based Reasoning,CBR)中,随着案例库规模的不断扩大,当检索的时间成本超过案例增多带来的准确率收益时,会出现"覆没问题"。从认知科学的角度研究一种具有选择记忆和有意遗忘功能的案例库维护方法,对新案例进行选择性保存,并对旧案例进行有意识删除。对比实验结果表明了所提方法的有效性,选择记忆和有意遗忘策略在提高分类准确率的基础上,能够显著降低时间复杂度和空间复杂度,从而使CBR的求解性能得以提高。 In the case-based reasoning(CBR),with the continuously growing of the size of case base,there may be so called"swamping problem"when the time cost of retrieval exceeds the benefit of the accuracy.From the perspective of cognitive science,a case base maintenance method with the ability of selective memory and intentional forgetting was proposed,which can selectively save the new cases and intentionally delete the old cases.The contrast experiments show the effectiveness of the proposed method.The selective memory and intentional forgetting policy can significantly reduce the time and space complexity,and preserve or improve the accuracy of CBR classifier,thus improve the performance of CBR.