作 者:
(牛海萍);
(王术);
机构地区:
北京工业大学应用数理学院,北京100124
出 处:
《北京工业大学学报》
2017年第9期1438-1448,共11页
摘 要:
得到了一类具有2个不同半径的同心圆周线初始间断的二维Burgers方程的激波与疏散波及其相互作用的整体结构.在初始值是2个不同的常数状态假设下,利用H(H')条件及R-H条件,分别构造出当0≤t≤(22^(1/2))/(u_+-u_-),(22^(1/2))/(u_+-u_-)(62^(1/2)+8)/(u_+-u_-)时的解,并发现一些新的现象.最后给出整体解的结构,当时间"t"固定时,解具有特殊的形状.
The shock wave,rarefaction wave and their global structure of interactions to 2-D Burgers equation with initial discontinuity were obtained based on two concentric circles with different radii.When the initial data just contained two different constant states,through condition H( H') and condition R-H,solutions were given respectively when 0≤t≤2√2/u+-u-,2√2/u+-u-t≤4/u+-u-,4/u+-u-t≤8/u+-u-,8/u+-u-t≤2(√26-7√2-√10-7√2/u+-u-,2(√26-7√2-√10-7√2)〈t≤6√2+8/u+-u- and t〉6√2+8/u+-u-and some new phenomena were discovered.Finally,the structure of global solution which had the special structure for any fixed time"t"was presented.
关 键 词:
方程
初始间断
条件
全局解