帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

Ultrathin free-standing electrospun carbon nanofibers web as the electrode of the vanadium flow batteries
Ultrathin free-standing electrospun carbon nanofibers web as the electrode of the vanadium flow batteries

作  者: ();

机构地区: Division of Energy Storage,Dalian Institute of Chemical Physics,Chinese Academy of Sciences

出  处: 《Journal of Energy Chemistry》 2017年第4期730-737,共8页

摘  要: Ultrathin free-standing electrospun carbon nanofiber web(ECNFW) used for the electrodes of the vanadium flow battery(VFB) has been fabricated by the electrospinning technique followed by the carbonization process in this study to reduce the ohmic polarization of the VFB. The microstructure, surface chemistry and electrochemical performance of ECNFW carbonized at various temperatures from 800 to 1400 °C have been investigated. The results show that ECNFW carbonized at 1100 °C exhibits the highest electrocatalytic activity toward the V;/V;redox reaction, and its electrocatalytic activity decreases along with the increase of carbonization temperature due to the drooping of the surface functional groups.While for the VO;/VO;redox couple, the electrocatalytic activity of ECNFW carbonized above 1100 °C barely changes as the carbonization temperature rises. It indicates that the surface functional groups could function as the reaction sites for the V;/V;redox couple, but have not any catalytic effect for the VO;/VO;redox couple. And the single cell test result suggests that ECNFW carbonized at 1100 °C is a promising material as the VFB electrode and the VFB with ECNFW electrodes obtains a super low internal resistance of 250 mΩ cm;. Ultrathin free-standing electrospun carbon nanofiber web(ECNFW) used for the electrodes of the vanadium flow battery(VFB) has been fabricated by the electrospinning technique followed by the carbonization process in this study to reduce the ohmic polarization of the VFB. The microstructure, surface chemistry and electrochemical performance of ECNFW carbonized at various temperatures from 800 to 1400 °C have been investigated. The results show that ECNFW carbonized at 1100 °C exhibits the highest electrocatalytic activity toward the V^(2+)/V^(3+)redox reaction, and its electrocatalytic activity decreases along with the increase of carbonization temperature due to the drooping of the surface functional groups.While for the VO^(2+)/VO_2^+redox couple, the electrocatalytic activity of ECNFW carbonized above 1100 °C barely changes as the carbonization temperature rises. It indicates that the surface functional groups could function as the reaction sites for the V^(2+)/V^(3+)redox couple, but have not any catalytic effect for the VO^(2+)/VO_2^+redox couple. And the single cell test result suggests that ECNFW carbonized at 1100 °C is a promising material as the VFB electrode and the VFB with ECNFW electrodes obtains a super low internal resistance of 250 mΩ cm^2.

相关作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚

相关机构对象

机构 中山大学
机构 暨南大学
机构 华南师范大学
机构 华南理工大学
机构 广东外语外贸大学

相关领域作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚