帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

A rapid synthesis of high surface area PdRu nanosponges:Composition-dependent electrocatalytic activity for formic acid oxidation
A rapid synthesis of high surface area PdRu nanosponges:Composition-dependent electrocatalytic activity for formic acid oxidation

作  者: ();

机构地区: Electroanalytical Chemistry Research Laboratory,Department of Analytical Chemistry,Faculty of Chemistry,University of Mazandaran

出  处: 《Journal of Energy Chemistry》 2017年第4期703-711,共9页

摘  要: Here, Pd Ru nanoparticle networks(NPNs) with various compositions were synthesized through an inexpensive method in water as a green solvent, at different ratios of the H;PdCl;and RuCl;precursors. This is a fast, room temperature and surfactant free strategy which is able to form high surface area metal nanosponges with a three-dimensional(3D) porous structure. The structure of as-prepared nanosponges was characterized using the techniques of field emission scanning electron microscopy(FESEM), energy dispersive spectroscopy(EDS) and cyclic voltammetry(CV). Then, the electrocatalytic activities of Pd Ru NPNs towards formic acid oxidation were examined by electrochemical measurements including CV,chronoamperometry, and electrochemical impedance spectroscopy(EIS). Based on studies, it was found that the current density of formic acid oxidation(FAO) is strongly dependent on the composition of Pd Ru NPNs. The best performance was realized for Pd;Ru;NPNs compared to monometallic Pd counterpart and other bimetallic NPNs which might be ascribed to the role of Ru in the decrease of CO adsorption strength on the catalyst and consequently the priority of formic acid oxidation through the direct pathway. The Pd;Ru;NPNs also showed the maximum current density and stability in chronoamperometric measurements. In addition, comparative studies were performed between as-prepared NPNs and CNTs-supported Pd nanoparticles(Pd NPs/CNTs). The present results demonstrated the unique structural advantages of NPNs compared to individual Pd NPs supported on the CNT which leads to the promising performance of NPNs as supportless catalysts for the oxidation of formic acid. Here, Pd Ru nanoparticle networks(NPNs) with various compositions were synthesized through an inexpensive method in water as a green solvent, at different ratios of the H_2PdCl_4 and RuCl_3 precursors. This is a fast, room temperature and surfactant free strategy which is able to form high surface area metal nanosponges with a three-dimensional(3D) porous structure. The structure of as-prepared nanosponges was characterized using the techniques of field emission scanning electron microscopy(FESEM), energy dispersive spectroscopy(EDS) and cyclic voltammetry(CV). Then, the electrocatalytic activities of Pd Ru NPNs towards formic acid oxidation were examined by electrochemical measurements including CV,chronoamperometry, and electrochemical impedance spectroscopy(EIS). Based on studies, it was found that the current density of formic acid oxidation(FAO) is strongly dependent on the composition of Pd Ru NPNs. The best performance was realized for Pd_4Ru_1 NPNs compared to monometallic Pd counterpart and other bimetallic NPNs which might be ascribed to the role of Ru in the decrease of CO adsorption strength on the catalyst and consequently the priority of formic acid oxidation through the direct pathway. The Pd_4Ru_1 NPNs also showed the maximum current density and stability in chronoamperometric measurements. In addition, comparative studies were performed between as-prepared NPNs and CNTs-supported Pd nanoparticles(Pd NPs/CNTs). The present results demonstrated the unique structural advantages of NPNs compared to individual Pd NPs supported on the CNT which leads to the promising performance of NPNs as supportless catalysts for the oxidation of formic acid.

相关作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚

相关机构对象

机构 中山大学
机构 暨南大学
机构 华南师范大学
机构 华南理工大学
机构 广东外语外贸大学

相关领域作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚