帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

Porous nanostructured ZnCo2O4 derived from MOF-74:High-performance anode materials for lithium ion batteries
Porous nanostructured ZnCo_2O_4 derived from MOF-74:High-performance anode materials for lithium ion batteries

作  者: ();

机构地区: School of Chemistry and Chemical Engineering,Southeast University

出  处: 《Journal of Energy Chemistry》 2017年第4期673-680,共8页

摘  要: Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries. Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo_2O_4 and Co_3O_4 were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co_3O_4, the electrochemical properties of the obtained porous nanostructured ZnCo_2O_4 exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo_2O_4 is potentially promising for application as an efficient anode material for lithium ion batteries.

相关作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚

相关机构对象

机构 中山大学
机构 暨南大学
机构 华南师范大学
机构 华南理工大学
机构 广东外语外贸大学

相关领域作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚