帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

SCR烟气脱硝催化剂V-W-TiO_2失活预测模型
Deactivation prediction model for flue gas denitration catalyst V-W-TiO_2

作  者: (沈伯雄); (张浩浩); (吴撼明); (江晓明); (王虎);

机构地区: 河北工业大学能源与环境工程学院,天津300401

出  处: 《热力发电》 2017年第9期24-30,共7页

摘  要: 针对燃煤电厂选择性催化还原(SCR)脱硝催化剂失活问题,在催化剂失活最主要的3个因素(化学中毒、孔道堵塞、飞灰磨损)基础上构建对应的失活函数。将电厂SCR烟气脱硝系统运行数据带入模型进行拟合,进而建立催化剂失活预测模型,得到模型中多种涉及失活的关键性参数。结果表明:毒性氧化物在催化剂上的沉积速率依次为K_2O>CaO>Na_2O>As_2O_3,堵塞速率与飞灰的浓度及粒径分布有关;磨损系数与烟气流量、流速及飞灰颗粒性质有关;采用失活预测模型能较好预测催化剂实际失活的情况。 Aiming at solving the deactivation problem of catalyst for SCR system in coal-fired power plant, based on three main factors affecting the catalyst deactivation: chemical poisoning, pore plugging and fly ash abrasion, the corresponding deactivation function was formulated. Then the prediction model for catalyst activity was established. The actual operation data of a power plant's SCR system were used in model fitting, and the key parameters of deactivation involved in the model were obtained. The results show that, the order of the toxic oxides' deposition rate is K20〉CaO〉Na20〉As2O3, and the blocking rate is related to the concentration and size distribution of the fly ash. The abrasion coefficient has a relationship with the flue gas flow and velocity as well as the fly ash particles' properties. This prediction model can well predict the catalyst deactivation in actual power plant.

关 键 词: 烟气脱硝 选择性催化还原 催化剂 失活 数学模型 失活预测

相关作者

相关机构对象

相关领域作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚