机构地区: 长江大学文理学院,湖北荆州434000
出 处: 《中北大学学报(自然科学版)》 2017年第3期260-263,共4页
摘 要: 研究了单位球面S^(n+1)(1)中具有常数量曲率的紧致极小超曲面M^n.假设超曲面M^n具有n-1个符号相同的主曲率,利用其第二基本形式构造了一函数,通过计算该函数的拉普拉斯,得到了相应的不等式,最后利用积分得到M^n是极小Clifford环面S^1((1-r^2)^(1/2)×S^(n-1)(r). Compact minimal hypersurface Mn in Sn+1(1) with constant scalar curvature was investigated.Assume that Mn has n-1 principal curvatures with the same sign everywhere.Through using the second fundamental form, a function is defined.By calculating the Laplace of this function, a inequality can be obtained.At last, using integration, it draws the conclusion that Mn is a Clifford Torus S11-r2×Sn+1(r).