帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

Overexpression of Stella improves the efficiency of nuclear transfer reprogramming
Overexpression of Stella improves the efficiency of nuclear transfer reprogramming

作  者: (无);

机构地区: 不详

出  处: 《Journal of Genetics and Genomics》 2017年第7期363-366,共4页

摘  要: In mammalians, the state of a somatic cell can be reversed from the terminal state to the totipotent state by means of somatic cell nuclear transfer (SCNT) (Gurdon, 1962) or induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). The DNA methylation and transcriptome profiles of embryonic stern cells (ESCs) derived from SCNT embryos (NT-ESCs) correspond closely to those of ESCs derived from in vitro fertilization embryos (IVF- ESCs). In contrast, iPSCs differ from both NT-ESCs and IVF-ESCs in that they retain the residual DNA methylation patterns of their parental somatic cells. As SCNT can be used to faithfully reprogram human somatic cells to pluripotency, it is ideal for cell replacement therapies (Ma et al., 2014). Following the successful production of the first human NT-ESCs (Tachibana et al., 2013) and the later gen- eration of human NT-ESCs based on cells from elderly adults or pa- tient cells (Chung et al., 2014; Yamada et al., 2014), a version of the SCNT technique for human therapeutics comes closer to reality. However, no matter what animal species or donor cell types are used in the cloned process, the cloning efficiency remains undesir- able. Besides, there are many phenotypic abnormalities in cloned animals, containing frequent embryonic and perinatal death and placentomegaly, and the underlying mechanisms remain unclear (Yang et al, 2007). In mammalians, the state of a somatic cell can be reversed from the terminal state to the totipotent state by means of somatic cell nuclear transfer (SCNT) (Gurdon, 1962) or induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). The DNA methylation and transcriptome profiles of embryonic stern cells (ESCs) derived from SCNT embryos (NT-ESCs) correspond closely to those of ESCs derived from in vitro fertilization embryos (IVF- ESCs). In contrast, iPSCs differ from both NT-ESCs and IVF-ESCs in that they retain the residual DNA methylation patterns of their parental somatic cells. As SCNT can be used to faithfully reprogram human somatic cells to pluripotency, it is ideal for cell replacement therapies (Ma et al., 2014). Following the successful production of the first human NT-ESCs (Tachibana et al., 2013) and the later gen- eration of human NT-ESCs based on cells from elderly adults or pa- tient cells (Chung et al., 2014; Yamada et al., 2014), a version of the SCNT technique for human therapeutics comes closer to reality. However, no matter what animal species or donor cell types are used in the cloned process, the cloning efficiency remains undesir- able. Besides, there are many phenotypic abnormalities in cloned animals, containing frequent embryonic and perinatal death and placentomegaly, and the underlying mechanisms remain unclear (Yang et al, 2007).

相关作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚

相关机构对象

机构 中山大学
机构 暨南大学
机构 华南师范大学
机构 华南理工大学
机构 广东外语外贸大学

相关领域作者

作者 庞菊香
作者 康秋实
作者 康超
作者 廖伟导
作者 廖刚