导 师: 姜灵敏
学科专业: 120202
授予学位: 硕士
作 者: ;
机构地区: 广东外语外贸大学
摘 要: 随着网络信息时代的到来,网络游戏产业应运而生。与此同时,网络游戏产业蓬勃发展,市场进一步扩大,网络游戏逐渐成为网络经济的领头羊。目前大多数的游戏运营商在游戏的营销活动的推广上,都存在很大程度的盲目性和随机性。这样不仅浪费了游戏运营商的推广资源,同时也影响了玩家的游戏体验。如何准确地寻找网络游戏中的目标营销群体是游戏运营商在客户关系管理中最重要的一步,也是节约运营成本和提供高质量的个性化服务亟待解决的一个问题。 其中,有效的网络游戏玩家信息指标体系是目标营销群体挖掘的基础,它对目标营销群体挖掘效果起着决定性的作用。目前,国内外对网络游戏的客户关系管理的研究尚少,且针对网络游戏玩家的信息指标体系研究比较简单,尚没有系统的研究。同时,决策树己经在各个行业得以充分运用,但在网络游戏领域上尚未涉及。此外,行之有效的游戏数据处理方法还尚未明朗。 本文的创新之处在于突破了传统客户细分仅仅基于人口统计项进行细分的不足,提出融合游戏玩家游戏内和游戏外行为两方面行为信息来更全面地刻画一个玩家。此外,将决策树分析技术引入网络游戏目标营销客户挖掘,并提出一种有效的基于决策树分类技术的网络游戏目标营销客户挖掘框架。最后,通过真实游戏案例的实验,为网络游戏目标营销客户挖掘提供了简单、可操作性强的应用实践建议。 本文提出了一种客观且切实可行的网络游戏玩家信息指标体系和目标营销群体挖掘方法(具体实例应用准确率达90/%以上),不仅对网络游戏的客户关系管理的理论和实践均具有借鉴意义,还有助于减少企业进行客户关系管理时的工作量、提高管理效益,更重要的是节约了大量不必要的营销推广成本� With the advent of network information era, network game industry arises at thehistoric moment. At the same time, the network game industry become more and moreprosperous and the market of it has further expanded. Gradually network game hasbecome the leader of the Internet economy. At present most of the game operatorshave a great degree of blindness and randomness when they do the promotion ofmarketing activities to the game players, what will not only waste the game operator’spromotion resources,but also affect the player's gaming experience. According to theproblem mentioned above, how to accurately find the target marketing group in onlinegame is the most important step for game operator in customer relationshipmanagement /(CRM/) and also the most urgent step to save operating costs and providehigh quality personalized service. Among all the processes of target marketing group mining, the effective onlinegamers’ information index system is the most basic one, which plays a decisive roleon mining. At present,there are few researches of network game in customerrelationship management /(CRM/). Besides, there is no systematic research for onlinegamers’ information index system. In addition, the decision tree has been applied invarious industries, but hardly in the network game area. Meanwhile, the effectivemethod to resolve the game data has not yet been found. The innovations of this paper include the breakthrough of the insufficient intraditional customer segmentation based on demographic items and the network gametarget marketing mining based on decision tree. This paper proposes a game players’information index system that contains both the outside and inside game behaviorinformation. In addition, the technology of decision tree analysis was introduced intothe network game target marketing customer mining. This paper puts forward aneffective online game target marketing customer mining framework based on thetechnology of decision tree classification. Finally, through the experiment of re