帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

黄河三角洲南部潮间带营养盐的收支特征
The Nutrient Budgets in the Southern Intertidal Area of the Yellow River Delta

导  师: 邹立

学科专业: H3001

授予学位: 硕士

作  者: ;

机构地区: 中国海洋大学

摘  要: 潮间带以其自然条件复杂,区域特点鲜明,环境净化和减灾功能以及丰富的自然资源而备受国内外学者的关注。物质和能量在潮间带的汇聚和释放过程说明,潮间带是地球/(地表/)物质和能量循环与流动的一个主要的横截面,研究这个横截面上的物质和能量的流通,对于认识整个地球系统的物质循环和能量流动都具有重大而深远的意义。 营养盐作为潮间带生态系统初级生产者的食物来源,其分布、变化和输送通量不仅直接影响到海洋生产力和资源的变动,而且可以反映海洋环境污染的程度、生态变化的状况,对其分布和变化规律的研究是当前海洋生态、环境和渔业资源研究的基础。 本文的研究区域黄河三角洲是一个典型的潮间带,其潮上带和潮下带距离较大,约3km,潮汐对其影响较显著,随着涨潮落潮,沉积物-水-气三相周期性交互作用,研究该区域营养盐的分布特征和输送通量对于揭示生源物质在多介质、多界面和多物质等相互作用的复杂生态系统中的生物地球化学循环具有重要意义。分析所得的结论是正确预测区域初级和次级生产力的主要参数,为潮间带的合理利用和可持续发展提供理论依据。 为探讨潮间带区域营养盐的分布和输运特征,于2007年7月在东营黄河三角洲潮间带进行了现场调查,采集并分析上覆水和间隙水溶解无机态硝酸氮/(NO3-N/)、氨氮/(NH4-N/)、亚硝酸氮/(NO2-N/)、磷酸盐/(PO4-P/)、硅酸盐/(SiO3-Si/),以及溶解总氮/(DTN/)和总磷/(DTP/)含量。结果表明:潮间带水体中NH4-N和NO2-N浓度变化范围分别为0-80μmol//L和0-24μmol//L,平均浓度分别为30μmol//L和10μmol//L,均为由近岸向海和由南向北逐渐降低;NO3-N浓度变化范围为10-50μmol//L,平均浓度为30μmol//L,由近岸向海由北向南逐渐降低;PO4-P浓度在0-0.12μmol//L间变化,平均浓度为0.04μmol//L,整体由南向北浓度逐渐降低。潮间带间隙水中NH4-N浓度变化范围为120-180μmol//L,平均浓度为140μmol//L; NO2-N浓度变化范围为0-16μmol//L,平均浓度为6μmol//L,由西南部近岸的高值区向离岸方向逐渐降低;NO3-N浓度变化范围为2-24μmol//L,平均浓度为10μmol//L,除近岸的低值区,整个区域浓度变化不大;PO4-P浓度变化范围为0.1-1.5μmol//L,平均浓度为0.3μmol//L,由西北和东南两个高值区向其他区域逐渐降低;SiO3-Si浓度变化范围为30-80μmol//L,平均浓度为50μmol//L;由近岸向离岸方向逐渐降低。 为探讨潮间带区域沉积物营养盐的输送方向,进行沉积物柱状样的实验室淋溶实验,结果表明:落潮时DTN和DTP浓度都是由沉积物表层向底层递增,低潮和涨潮时DTN和DTP浓度则反相变化。 根据化学计量限制计算,以本文所得间隙水营养盐与底栖叶绿素a含量为基本数据,得到营养要素对底栖藻类生长的潜在作用如下:P和Si都可能成为该区域底栖藻生长繁殖的限制性因子,其中P是首要影响因子。 为探讨潮间带区域营养盐的时空变化特点和输送通量,于2007年9月、2008年4月和2008年7月在黄河三角洲南部潮间带设置三个15小时连续站,监测溶解无机态硝酸氮/(N03-N/)、氨氮/(NH4-N/)、亚硝酸氮/(NO2-N/)、磷酸盐/(PO4-P/)、硅酸盐/(SiO3-Si/)以及溶解总氮/(DTN/)和总磷/(DTP/)含量。结果表明:秋、春和夏季DTN的浓度范围分别为27.55-88.53μmol//L/(/(平均为57.79μmol//L/)、96.00-249.75μmol//L/(平均为168.65μmol//L/)和92.97-265.33μmol//L/(平均为173.00μmol//L/);DIN的浓度范围分别为8.86-85.82μmol//L/(平均为34.93μmol//L/)、70.56-235.09μmol//L/(平均为140.74μmol//L/)和64.08-152.17μmol//L/(平均为101.12μmol//L/);DTP的浓度范围分别为0.22-3.14μmol//L/(平均为1.05μmol//L/)、1.04-5.27μmol//L/(平均为2.41μmol//L/)和1.40-8.03μmol//L/(平均为4.60μmol//L/); DIP的浓度范围分别为0.03-0.67μmol//L/(平均为0.21μmol//L/)、0.12-0.83μmol//L/(平均为0.45μmol//L/)和1.12-5.31μmol//L/(平均为2.52μmol//L/);秋季和夏季DISi的浓度范围分别为5.78-21.19μmol//L/(平均为13.97μmol//L/)和79.84-310.44μmol//L/(平均为119.43μmol//L/)。 该潮间带区域N主要来自陆源输入;秋季航次的调查表明该区域DIP和DTP亦与陆源输入有关,而春季航次和夏季航次的调查表明该区域潮间带P主要来自水体对沉积物表层的搅动而引起的释放;DISi来自陆源输入 分别建立潮间带与开放海域、沉积物和浮游植物物质交换计算模型,以本文数据和结果为基础,计算夏季潮间带研究区域的营养盐收支结果如下:该区域对开放海域水体的营养盐输送量/(DIN为15.70×107μmol//m2, DIP为0.46×107μmol//m2/)远大于沉积物对水体的营养盐补充/(DIN为6415.36μmol//m2, DIP为5.28μmol//m2/)和浮游植物的对营养盐的吸收/(DIN为5235.1μmol//m2, DIP为147.77μmol//m2/)。表明该季节黄河三角洲潮间带水体营养盐表现为净输出。 The intertidal areas are widely studied for its complex natural conditions, distinctive regional characteristics, environmental purification, mitigation functions and abundant natural resources. The processes on the material and energy aggregation and release in the intertidal area shows that the intertidal area is a main cross-section for the material cycle and energy flow on the earth surface. It's very meaningful to research the circulation and fluxion by which may help us to understand the behavior in the whole earth system. As the source of the primary producer in the intertidal ecosystem, the distribution, variety and transportation flux of nutrients not only influence the change of marine productivity and resource directly, but also reveal the pollution degree in marine environment and the condition for the ecological change. The study area of this paper is located at a typical intertidal area in the north China, ranging between the super tidal zone and subtidal zone with 3 km width. In order to demonstrate the distribution and transportation of nutrients in the intertidal area of the Yellow River Delta, dissolved inorganic /(NO3-N, NH4-N, NO2-N, PO4-P and SiO3-Si/) and organic nutrients /(DTN and DTP/) in the waters and porewaters were collected and analyzed in July,2007. The results showed that the NH4-N and NO2-N concentrations in waters ranged from 0-80μmol//L and 0-24μmol//L /(averaged at 30μmol//L and 10μmol//L/), respectively, both decreasing from the coast to the sea and from the south to the north. The NO3-N concentrations ranged from 10-50μmol//L /(averaged at 30μmol//L/),with the tendency of decreasing from the coast to the sea and from the south to the north. The PO4-P concentrations ranged from 0.00-0.12μmol//L /(averaged at 0.04μmol//L/), decreasing from the south to the north. The NH4-N concentrations in porewaters ranged from 120-180μmol//L /(averaged at 140μmol//L/). The NO2-N concentrations in porewaters ranged from 0.00-16μmol//L /(averaged at 6μmol//L/), deceasing from the southwest of the coast to sea. The NO3-N concentrations in porewaters ranged from 2-24μmol//L /(averaged at 10μmol//L/), with a comparatively unanimous distribution except a low value near the coast. The PO4-P concentrations in porewaters ranged from 0.1-1.5μmol//L /(averaged at 0.3μmol//L/), decreasing two high values in the northwest and southeast to the other areas. The SiO3-Si concentrations in porewaters ranged at 30-80μmol//L, decreasing from the coast to the sea. Leaching experiment on the core sediments in different layers showed that, DTN and DTP concentrations increased from the surface to deep layers in ebb tide, while decreased in flood and low tides. Based on the equation of stoichiometric limiting calculation and the investigation data on benthic chl-a and nutrients contents in porewaters, it was suggested that both P and Si could be the potential limiting factors on the growth and reproduction of the benthic algae, in which P would be the primary one. In order to address the seasonal and tidal variations and transportation flux of nutrients in the intertidal area of the Yellow River Delta, NO3-N, NH4-N, NO2-N, PO4-P and SiO3-Si and DTN and DTP nutrients in the seawaters were collected and analyzed in September 2007, April 2008 and July 2008 by anchor monitoring, respectively. The results show that DTN ranged from 27.55-88.53μmol//L /(averaged at 57.79μmol//L/),96.00-249.75μmol//L /(averaged at 168.65μmol//L/) and 92.97-265.33μmol//L /(averaged at 173.00μmol//L/) in autumn, spring and summer correspondingly, so did DIN from 8.86-85.82μmol//L /(averaged at 34.93μmol//L/), 70.56-235.09μmol//L /(averaged at 140.74μmol//L/) and 64.08-152.17μmol//L /(averaged at 101.12μmol//L/); DTP from 0.22-3.14μmol//L /(averaged at 1.05μmol//L/), 1.04-5.27μmol//L /(averaged at 2.41μmol//L/) and 1.40-8.03μmol//L /(averaged at 4.60μmol//L/); DIP from 0.03-0.67μmol//L /(averaged at 0.21μmol//L/),0.12-0.83μmol//L /(averaged at 0.45μmol//L/) and 1.12-5.31μmol//L /(averaged at 2.52μmol//L/). DISi ranged from 5.78-21.19μmol//L /(averaged at 13.97μmol//L/) and 79.84-310.44μmol//L /(averaged at 119.43μmol//L/) in autumn and summer, respectively. It was suggested that DIN, DTN and DISi in this intertidal area primarily originated from terrigenous input, while DIP and DTP originated from terrigenous input in autumn but contributed by the releasing from sediment in spring and summer. An material exchange model was built up to estimate the fluxes between the intertidal water body with the open water, sediment and plankton correspondingly. Based on the data of this study, the nutrient budget was shown as followed. The DIN and DIP fluxes from intertidal water to the open water were 15.70×107μmol//m2 and 0.46×107μmol//m2, which were much higher than the supplying fluxes from sediment to the intertidal water /(DIN-6415.36μmol//m2 and DIP-5.28μmol//m2/)and the uptake amounts by phytoplankton /(DIN-5235.13μmol//m2 and DIP-147.77μmol//m2/). The net DIN and DIP fluxes in the intertidal water approximately equaled to those fluxes from intertidal water to open water, which is to say, an export on nutrients happened in the intertidal waters.

关 键 词: 黄河三角洲 潮间带 营养盐 通量

分 类 号: [X7]

领  域: [环境科学与工程]

相关作者

作者 郑艺群

相关机构对象

机构 华南理工大学经济与贸易学院

相关领域作者

作者 覃剑
作者 王逢文
作者 崔书琴
作者 吴贤静
作者 吴大磊