机构地区: 华东理工大学信息科学与工程学院自动化系
出 处: 《华东理工大学学报(自然科学版)》 2004年第2期175-178,共4页
摘 要: 提出了一种针对前馈神经网络的混合算法,该算法将最速下降法与共轭梯度法相结合,有效地改善了传统BP算法收敛速度慢、可能陷入局部极小等缺点。两个仿真结果表明,该算法是有效的。 In this paper, a mixed algorithm based on feedforward neural networks is introduced. This algorithm combines rapidly descent method with conjugate gradient method to overcome shortcomings of the traditional back-propagation algorithm, such as slow convergence and possible running into local optimum being affected by poor initial weights and setup parameters. The result of simulations shows that the mixed algorithm can be used effectively.
领 域: [自动化与计算机技术] [自动化与计算机技术]