机构地区: 国防科学技术大学机电工程与自动化学院
出 处: 《国防科技大学学报》 2003年第3期84-87,共4页
摘 要: 将独立成分分析(ICA)应用于多姿态人脸识别。对比分析了ICA和主成分分析(PCA)两种人脸识别方法的差异,并重点研究了多姿态人脸的独立成分(IC)表示。在基于权向量幅值的方法基础上,引入了基于比例因子的IC核选择的新方法。实验表明,新方法有利于提高识别的准确率和识别的效率。 Independence component analysis (ICA) is applied in posevaried face recognition. Discriminations between ICA and principal component analysis (PCA) in face recognition are analyzed, and independent component (IC) representation in posevaried face is discussed in detail. Based on the method that selects a subset as the kernel for the representation by ordering the sources via the magnitude of the corresponding weights, a novel IC representation of posevaried face based on the scale factor is proposed. Demonstration indicates that the proposed method is efficient.
领 域: [自动化与计算机技术] [自动化与计算机技术]