机构地区: 黑龙江大学自动化系
出 处: 《科学技术与工程》 2003年第5期405-407,共3页
摘 要: 用Kalman滤波方法,利用典范型分解对线性离散时不变广义随机系统提出了降阶Wiener状态平滑器,可明显减小计算负担,便于实时应用。一个仿真的例子说明了其有效性。 Using the Kalman filtering method, applying a decomposition in canonical form, a reduced-order Wiener state smoother is presented for linear discrete time-invariant descriptor stochastic systems, which can obviously reduces the computational burden and is suitable for real time applications. A simulation example shows its effectiveness.