机构地区: 深圳大学电子科学与技术学院电子科学与技术系
出 处: 《系统工程与电子技术》 2003年第9期1169-1172,共4页
摘 要: 提出一种新的两级遗传算法,用于求解带约束的非线性函数优化问题。本算法的特点是,在保留经典遗传算法中选种、交叉和变异3种基本操作的同时,增加了重构、局部寻优两种新操作,加快了收敛速度;利用拉格朗日时偶原理,构造拉格朗日对偶函数,在上下两级分别对拉格朗日乘子和函数变量进行优化搜索。算例表明了该算法的优越性。 A new two-level genetic algorithm is proposed for constrained nonlinear function optimization problems. Two new operations, namely reconstruction and local-search, are developed in the algorithm, which improve the convergence. By using La-grangian principle, the Lagrangian function is constructed according to the optimization function and constraints. The Lagrangian multiplier and the function variables are optimally searched on the upper level and the lower level respectively. Computational examples show the advantage of this algorithm.
领 域: [自动化与计算机技术] [自动化与计算机技术]