机构地区: 中山大学工学院应用力学与工程系
出 处: 《中山大学学报(自然科学版)》 2003年第4期1-3,共3页
摘 要: 将离散系统振动分析中的通用的矩阵摄动法推广到连续系统。采用弹性结构理论算子 ,对连续系统的振动特征值摄动问题进行统一描述。根据特征函数子空间缩聚法和正交分解的基本原理 ,推导了统一的摄动公式。该方法能同时有效地处理孤立、重及密集特征值 3种不同情况。以薄膜振动和变厚度薄板弯曲振动的特征值问题为例 ,阐明了方法的实际应用。 A united solution procedure for eigenvalue perturbation problem in structural vibration analysis of continuous systems is proposed with the aid of operator operation. This technique is developed by performing a subspace condensation and by using the orthogonal decomposition of eigenfunctions. The first and second perturbation formulas are derived. The present method can be universally applicable to continuous systems with all the three cases of eigenvalues: distinct, repeated and closely spaced eigenvalues. Illustrative examples of vibrating membrane and thin plates show the validity of the proposed method.