机构地区: 长沙理工大学水利工程学院
出 处: 《农业工程学报》 2016年第S2期46-51,共6页
摘 要: 再生水灌溉农田既可节约宝贵的水资源、缓解农业用水紧缺,同时再生水中的多种营养元素和微量元素可促进作物生长、提高粮食产量。但再生水中的物质进入农田后将引起土壤孔隙结构、团聚体结构、黏粒分散特征和水土作用关系等一系列的变化,进而引起土壤入渗性能和导水性能的改变,增大环境污染风险。该文综述了再生水中的悬浮无机固体、大分子有机质、油脂、表面活性剂和盐分对农田土壤水流运动的影响及其作用机理,指出受灌农田土壤结构性质演化过程与驱动机制、受灌农田土壤与灌溉入渗水流之间的相互作用关系为该领域亟需开展的2个研究方向。文章对再生水农田灌溉制度制定、污染风险控制和生态环境保护均有参考价值。 Reclaimed water irrigation saves precious water resources and alleviates the shortage of agricultural water supply. Besides, the nutrients and microelements in reclaimed water promote crop growth and grain output. However, the organic and inorganic materials in reclaimed water change soil porosity, aggregate stability, soil-water interactions and clay particle dispersion, enhancing environment contamination risk. This research reviewed the effects and driving mechanism of suspended inorganic solids, macromolecular organic matter, oils, surfactants and salts contained in reclaimed water on the change of soil infiltration rates and hydraulic conductivity. When reclaimed water penetrates soil profile, suspended particles are filtered by soil pores and then accumulate in the upper few centimeters of soil profile. These effects form a seal on soil surface, increase soil bulk density, and decrease soil porosity, making soil infiltration rates and hydraulic conductivity decrease significantly. The impacts of macromolecular organic compounds on soil water movement are complicated. On one hand, macromolecular organic compounds, incorporated with those decomposed and degraded products, are beneficial to the formation of water stable aggregates; and on the other hand, they can plug the soil pores also, which depend on their properties and gradually expose and change with the development of soil biochemical activity. Oils in the reclaimed water are hydrophobic compounds with long-chain alkyls. When the long-chain alkyls coat mineral particles or aggregate surface, the soil is resistant to instantaneous wetting and form water repellency. The water repellent status of a soil depends greatly on soil water content: increasing when water content is low, and decreasing as the water content increases to a value beyond which the soil shows no repellency. Although water repellency increases the stability of soil aggregates, it decreases the soil infiltration rate and hydraulic conductivity, making the agriculture land hard to be irri