帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

基于卷积词袋网络的视觉识别
Bag of convolutional words networks for visual recognition

作  者: ; ; ; (薛昆南);

机构地区: 电子工程学院

出  处: 《计算机工程与应用》 2016年第21期180-187,共8页

摘  要: 近年来,卷积神经网络(CNN)凭借其强大的特征学习能力在视觉识别领域取得重要进展。针对CNN全连接层对图像平移、旋转、缩放等变换比较敏感的问题,提出了一种混合模型——卷积词袋网络(Bo CW-Net)。它将Bo W模型嵌入CNN结构中并代替全连接层,通过端到端的方式学习特征、字典和分类器。为实现Bo CW-Net整个网络的有监督学习,提出基于方向相似度的Bo CW编码。同时,为充分利用中层特征和高层特征的鉴别性,将中层辅助分类器与高层分类器集成,形成主-辅集成分类器。实验结果表明:相比全连接层,Bo CW表示对各种变换具有更强的不变性;主-辅集成分类器能有效融合中层、高层特征,提高Bo CW-Net的识别性能;相比新近发展的CNN模型,Bo CW-Net在CIFAR-10、CIFAR-100和MNIST数据库上均取得了改进的识别性能,最终分别获得4.88%、22.48%和0.21%的测试错误率。 In recent years, Convolutional Neural Networks(CNN)have made a progress in visual recognition tasks with its powerful feature learning ability. A hybrid model called BoCW-Net is proposed to solve the problem that full-connection layer in CNN is more sensitive to image’s transformations such as translation, rotation and scale, et al. It embeds BoW model into CNN architectures and replaces the full-connection layer, while it can learn feature, dictionary and classifier in the end-to-end way. In order to realize supervised learning of whole BoCW-Net, BoCW encoding based on direction similarity is proposed. In the meanwhile, to take full advantage of the discrimination of both mid-level and high-level features,middle-level auxiliary classifier is integrated to high-level classifier to form the main-auxiliary ensemble classifier. Experimental results show that BoW model imbedded into CNN has better invariance for a variety of transformations compared with the full-connection layer. Main-auxiliary ensemble classifier can effectively fusion mid-level and high-level features to improve the recognition performance of BoCW-Net. Compared with the newly developed CNN models, BoCW-Net acquires improved recognition performance on CIFAR-10、CIFAR-100 and MNIST dataset with 4.88%, 22.48% and 0.21% final test error rate, respectively.

关 键 词: 卷积神经网络 卷积词袋 表示 辅集成分类器

领  域: [自动化与计算机技术] [自动化与计算机技术]

相关作者

作者 支素华
作者 张从毕
作者 李世琼
作者 李外香
作者 欧小波

相关机构对象

机构 暨南大学
机构 华南师范大学
机构 中山大学
机构 华南理工大学
机构 暨南大学新闻与传播学院

相关领域作者

作者 李文姬
作者 邵慧君
作者 杜松华
作者 周国林
作者 邢弘昊