作 者: ;
机构地区: 暨南大学信息科学技术学院数学系
出 处: 《数学杂志》 2002年第3期309-313,共5页
摘 要: A=Z[ν] m ' m是 Z[ν]的由ν- 1和奇素数 p生成的理想 .U是 A上的量子代数 .设 k是特征为零的代数闭域 .A→ K (ν|→ξ)是代数同态 ,并假定ξ不是 1的根或ξ是 p次本原根 .命Uk=U k A.J是 UK- Tilting模范畴 .对 λ∈ X+,M(λ)表首权为 λ的不可分解 UK- Tilting模 .本文证明了 ,对每个λ∈ X+,M(λ)作为 Uk 模是内射的当且仅当λ- (p- 1 )ρ∈ X+.我们还给出了内射 Uk模的若干充要条件 . Let U be a quantum group over A=Z m with a symmetric Cartan matrix, where M is the ideal of Z generated by v-1 and a fixd odd prime p,k be an algebraically closed of characteristic zero. Consider a ring homomorphism A→k(v|→ξ), Let U k=U Ak .Suppose that ξ is a primitive p th root of unity or ξ=1 . Let J be the category of U k -Tilting modules, M(λ)(λ∈X +) be indecomposable U k -Tilting modules with unique highest weight λ . In this paper we prove that the M(λ) is a injective U k module if and only if λ-(p-1)ρ∈X + , and give necessary and sufficient conditions for U k module V to be injective.