机构地区: 西南民族大学预科教育学院
出 处: 《四川师范大学学报(自然科学版)》 2014年第1期54-57,共4页
摘 要: CVaR方法是目前对机会约束最紧的凸逼近.通过CVaR方法,在给出了部分矩信息与支持集的情况下,首先得到一类最坏情况下的最小二乘的单个机会约束问题可以近似的看成一个凸规划问题,从而得到该问题的逼近解.利用本方法的特殊性,将联合机会约束问题转化一个单个机会约束问题,从而得到了联合机会约束的逼近解. It is popular that robust chance constraints can be conservatively approximated by worst-case Conditional Value-at-Risk i CVaR) constraints which is the tightest approximation. Firstly, we present that the robust individual chance constraint problem of least squares inequality can be conservatively approximated by convex programming and computed directly. Next, we also show that the robust joint chance constraint problem can be transformed into an individual chance constraint problem, then, the robust joint individu- al chance constraint can be approximated by larger convex programming.