作 者: ;
机构地区: 华南师范大学政治与行政学院
出 处: 《哲学研究》 2013年第6期111-118,129,共8页
摘 要: 受哥德尔不完全性定理的启示,塔斯基提出了著名的算术真之不可定义性定理(常称为“塔斯基定理”):任何一个形式语言,如果它丰富到足以包含算术,那么就不可能包含这样一个谓词T,使得模式“T“A”,当且仅当A”对这个语言中的任何语句A都成立。 In both Tarski's and Kripke's theories of truth,the principle being used to define the truth predicate is not Tarski's T-scheme(i.e.,T ' A ' iff A),but the similar schemes that are involved in certain possible worlds.On the basis of these schemes,we generalize a new scheme for the truth predicate;for any possible worlds u and v,if v is accessible from u,then T' A' holds at v,iff.A holds at u.According to this scheme,the truth predicate of a language can be defined within this language itself even the evaluation of sentences is classical.Furthermore,this scheme is more compatible than Tarski's T-scheme:by use of the new scheme,we can not only reveal the common characteristics of all the paradoxes,but also determine their own semantic conditions under which they lead to a contradiction.
关 键 词: 哥德尔不完全性定理 谓词 形式语言 不可定义 塔斯基 算术 语句
领 域: [哲学宗教]