机构地区: 西华大学数学与计算机学院
出 处: 《西华大学学报(自然科学版)》 2013年第2期5-8,共4页
摘 要: 各类P系统并行计算的实现是膜计算的一个研究热点。针对耗尽型脉冲神经P系统,提出了其并行计算的矩阵表示,并以此为基础研究了耗尽型脉冲神经P系统的GPU实现。仿真实验分析了耗尽型脉冲神经P系统的并行计算在GPU上的加速性能,在10次实验中,GPU对CPU的平均加速比为1.4。 The realization of parallel computing for all kinds of P systems is the research hot point for membrane computing. Matrix representation for spiking neural P system with exhaustive use of rules is proposed in this paper. With the completion of the matrix rep-resentation, the authors research the GPU implementation of the spiking neural P system with exhaustive use of rules. The parallel com-puting simulation of the spiking neural P system with exhaustive use of rules gives the acceleration performance on GPUs. In ten times experiments, the average acceleration ratio of GPU to CPU is 1.4 .
领 域: [自动化与计算机技术] [自动化与计算机技术]