帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

有限区域条件下离散时间系统的反控制与电路实现
Anti-control and circuit implementation of discrete-time systems under limited regional conditions

作  者: ; ; ; ;

机构地区: 广东工业大学自动化学院

出  处: 《物理学报》 2012年第19期53-61,共9页

摘  要: 在Chen-Lai算法和Wang-Chen算法中,模函数的定义域均为(-∞,+∞).然而,在电子电路等技术实现中,模函数定义在有限区域上则更符合实际情况.本文以有限区域条件下模函数为正弦函数的离散时间系统反控制为典型实例,给出了受控系统在Li-Yorke意义下混沌的充分条件和严格的理论证明,从而能根据定理给出的充分条件和器件自身规定的一个有限区域或动态范围的约束条件来共同确定电路的具体参数范围,为电路设计与技术实现提供理论依据.基于这一方法,设计了有限区域条件下模函数为正弦函数的离散时间系统反控制电路,给出了电路实验结果,证实了本方法的可行性.本文的这种方法也可用于解决有限区域条件下模函数为其他非线性函数的离散时间反控制与电路实现问题. In the Chen-Lai and Wang-Chen algorithm, the modular functions are both defined in (-∞, +∞). A modular function, however, in the implementation of electronic circuit, is more reasonable in line with the actual situation if it is defined in a finite region. We take for example the anti-control of a discrete time system, of which the modular function is sine function on the basis of a finite region. And in the sense of Li-Yorke, the chaotic sufficient condition and the rigorous theory proof are provided. As a result, ranges of specific circuit parameters can be determined by both the sufficient conditions resulting from the theorem, and a finite region defined by the device, or the constraint conditions of a dynamic range. Therefore, this provides a fundamental basis for the circuit design and its technology. Based on this method, the anti-control circuit of the discrete time system is designed, of which the modular function is sine function in a finite region. And the experimental results are given for confirming the feasibility of the method. The method presented in this paper can also be applied to the circuit implementation and the anti-control of a discrete time system, of which the modular function is other nonlinear function.

关 键 词: 有限区域条件 离散时间系统 反控制 电路实现

领  域: [理学] [理学]

相关作者

相关机构对象

相关领域作者

作者 刘广平
作者 彭刚
作者 杨科
作者 陈艺云
作者 崔淑慧