机构地区: 南阳师范学院数学与统计学院
出 处: 《南阳师范学院学报》 2012年第6期15-17,共3页
摘 要: 利用Bochner公式和局部共形Khler流形理论知识,主要证明了满足某些条件的局部共形Khler流形一定为Vaisman流形.如:具有非负Ricci曲率且∫m(▽Bω)(B)*1=0;具有非负Rrcci曲率且dim(H1(M))=1等.同时,文中也给出一个判断非Vaisman流形的充分条件。 By applications of theory of locally conformally Khler manifold and Bochner formula,we prove that under some conditions,a locally conformal compact Khler manifold must be Vaisman manifold,for example :with ∫M(▽Bω)(B)*1=0 and non-negative Ricci curvature,with non-negative Ricci curvature and dim(H1(M))=1,and that one special method is given which is sufficient to prove non-Vaisman manifold.