机构地区: 广西科技大学电子与信息工程学院
出 处: 《宁夏大学学报(自然科学版)》 2011年第3期231-234,共4页
摘 要: 以周期性聚焦磁场通道中的Kapchinskij-Vladimirskij(K-V)分布离子束为对象,研究了强流束晕-混沌现象的RBFNN自适应控制方法.该方法以神经网络的输出作为周期聚焦磁场的线性控制因子,通过对外部磁场的线性调节实现束晕-混沌控制.模拟结果表明:当选择恰当的RBFNN控制结构,自适应调整其内部参数,可将混沌变化的束包络半径控制在匹配半径附近单周期稳定振荡;该方法用于多粒子模拟系统中,能较好改善束的品质,束晕-混沌现象能得到有效抑制. The Kapchinskij-Vladimirskij(K-V) distribution beam in the periodical focusing channels(PFCS) is selected as typical example,and a control method based on radial basis function neural network(RBFNN) is presented for control beam halo-chaos.The output of network as a controlling element is used to adjust focusing magnetic filed proportionally for control beam halo-chaos.Numerical results show that chaotic envelope radius of high-current beam can be controlled efficiently to the neighborhood of matched radius.This method is also applied to the multi-particle model.Under the control condition,the beam halos can be suppressed effectively,and quality of ion beam is improved evidently.This method provides a useful reference for controlling beam halo-chaos of high current beam in the PFCs.