机构地区: 上海交通大学电子信息与电气工程学院计算机科学与工程系
出 处: 《红外与毫米波学报》 1999年第5期412-416,共5页
摘 要: 提出了一种用于多字体字符识别的模糊神经网络模型.通过对一个3 层MLP的输入层、输出层以及学习算法的模糊化,构造出能有效处理具有模糊边界的模式分类问题的模糊神经网络.经过大量实际采样多字体字符样本的测试表明,该模型能对字体字符识别取得很高的识别率,对加噪字符的识别试验还表明该模型具有较好的鲁棒性. A novelfuzzy neuralnetw ork (FNN) m odelform ulti-fontcharacterrecognition w as presented, w hich can efficiently process the fuzzy pattern classification problem . This FNN m odelis built by fuzzifying the input layer, output layer and the training algorithm ofa conventionalm ultilayer perceptron (MLP). The sim ulation w ith a lot of m ulti-font character sam ples show s thatthe FNN presented here can geta high recognition rate, and has low sensitivity for different character fonts in com parison w ith classical MLP.Also, this FNN is proved to have a good robustness.