机构地区: 湖南大学电气与信息工程学院
出 处: 《控制理论与应用》 2011年第2期166-172,共7页
摘 要: 针对图像序列特征的运动估计问题,提出一种基于平行线段对应的运动估计线性算法(parallel linesegments,PLS).线段采用点、线两要素表述模型,利用平行性,由像线段逐步恢复场景中的空间线段,再根据螺旋理论四元数法建立并求解基于空间线段两要素的线性运动约束方程,进一步建立粒子群优化算法(PSO)优化算法优化运动参数.该算法最少两线两视图求得运动参数,既可克服多解现象,又可估计出平移量的大小,计算效率较高,模拟和真实实验都验证了该方法的有效性. We investigate the motion estimation from image sequence features,and propose for it a linear algorithm based on the parallel-line-segment(PLS) correspondences.The line segment is represented by two elements:end points and the line in between.The space line segment structure is reconstructed step by step from image lines,using the principle of parallelism.Then,the two elements of a space line segment are established based on the motion parameter equations which are solved by using the screw theory and quaternion.Finally,the motion parameters are optimized by the particle swarm optimization(PSO) algorithm.Our algorithm needs at least two lines and two perspective views to obtain the parameters;thus,the multisolution phenomenon is avoided and the magnitude of the translation is estimated with high computation efficiency.Simulations and real experiments illustrate the effectiveness of the proposed algorithm.
领 域: [自动化与计算机技术] [自动化与计算机技术]