机构地区: 广东科学技术职业学院计算机工程技术学院
出 处: 《山西大学学报(自然科学版)》 2010年第4期525-532,共8页
摘 要: 基于矩阵的非精确分裂和多重分裂、处理器的并行计算和松弛迭代算法,提出了求解线性互补问题的非精确松弛多分裂算法,当问题的系数矩阵为对角元为正的H-矩阵时或对称半正定时,证明了算法的全局收敛性.并在一定条件下给出了非精确松弛多分裂算法内迭代的特殊形式,分析了该情形下算法的收敛特性. The inexact relaxed multi-splitting iterative method for solving the linear complementarity problem was introduced,which was based on the inexact splitting method, parallel computation and the multisplitting method. This method provides a specific realization for the multi-splitting method and generalizes many existing matrix splitting methods for linear complementarity problem. Moreover, the global convergence theory of this method is proved when the coefficient matrix is an H-matrix or symmetric matrix. Fi- nally,a specific iteration form for this inexact multi-splitting method is presented, where the inner iterations are implemented through a matrix splitting method. Convergence properties for this specific form are analyzed.