机构地区: 深圳大学光电工程学院光电子器件与系统教育部重点实验室
出 处: 《物理学报》 2010年第9期6193-6199,共7页
摘 要: 基于器件模拟仿真,设计了一种1.5μm波长InGaAsP-InP晶体管激光器材料外延结构.其多量子阱有源区置于基区非对称波导中.仿真结果显示该外延结构能够获得较好的光场限制和侧向电流限制.对该材料MOCVD生长研究表明,基极重掺杂接触层中Zn2+扩散将导致量子阱严重退化.通过对其扩散过程的模拟仿真,采用平均掺杂浓度为1×1018cm-3的梯度掺杂,有效地抑制了Zn2+向量子阱区的扩散.所获得的外延材料在1.51μm呈现较强的PL峰值,具有卫星峰清晰的XRD谱. An InGaAsP-InP transistor laser (TL) working at 1. 5 μm and its epitaxy structure with MQW active layer buried between unsymmetrical upper and lower waveguides in base region has been designed and modeled. The simulation result shows that the proposed TL has good optical and lateral electrical current confinement. The result of epitaxial experiment by metalorganic chemical vapor deposition (MOCVD) shows that the diffusion of doped Zn2 + from heavily doped base contactor layer to active waveguide can induce serious degradation of quantum wells. By modeling the Zn2 + diffusion from heavily doped base contactor layer,a gradient doping profile with an average doping density of 1 (1018 cm -3 in the base contact layer has been used in the epitaxy process to constrain the Zn2 + diffusion to quantum wells. The test result of the epitaxy material has demonstrated high PL intensity at 1. 51 μm and clear satellite diffraction peaks in the XRD spectrum.
领 域: [电子电信]