帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

三江源地区温度和降水量空间插值方法比较
Comparison of Spatial Interpolation Methods on Temperature and Precipitation of Sanjiangyuan Region

作  者: ; ; ; ;

机构地区: 中国林业科学研究院森林生态环境与保护研究所

出  处: 《安徽农业科学》 2010年第18期9646-9649,9680,共5页

摘  要: 以获取三江源地区1971~2000年的各月降水及平均气温的栅格数据为目的,选取青海省及其周边共58个基准气象站点的气候数据,结合100 m×100 m分辨率的数字高程模型(DEM)数据,采用协同克里格(Co-Kriging,COK)和薄盘光滑样条函数(Thin plate smoothing splines,TPS)2种方法进行气温及降水的空间插值。用广义交叉验证(General cross validation,GCV)的最小统计误差筛选最佳模型,用均方根预测误差(RMSE)和平均绝对误差(MAE)比较2种方法的精度。结果表明,①不论是COK还是TPS,引入协变量后模型插值结果的精度更优;②TPS的插值效果显著优于COK:对月均温模型,TPS的RMSE值比COK提高了69.48%,MAE验证指标提高了70.56%;而对于月降水模型,TPS的RMSE值比COK提高了28.07%,MAE值提高了29.06%。 In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan region,the Co-Kriging(COK) and thin plate smoothing splines(TPS) interpolation methods were applied by using the climate data in 1971-2000 of 58 meteorological stations around Qinghai province and the 3 arc-second digital elevation model(DEM) data.The performance was evaluated by the smallest statistical errors by general cross validation(GCV).Root-mean squared predicted errors(RMSE) and mean absolute errors(MAE) were used to compare the performance of the two methods.The result showed that: ① After combing covariates into the models,both methods performed better;② The performance of TPS was significantly better than COK: for monthly average temperature,the RMSE derived from TPS was 69.48% higher than COK,as MAE increased by 70.56%;And for monthly precipitation,the RMSE derived from TPS was 28.07% higher than COK,as MAE increased by 29.06%.

关 键 词: 三江源地区 插值

领  域: [天文地球]

相关作者

作者 熊昌盛

相关机构对象

机构 华南农业大学信息学院
机构 广东工业大学

相关领域作者

作者 徐锦堂
作者 张祖荣
作者 曲进
作者 黄霓
作者 林平凡