机构地区: 肇庆学院计算机学院
出 处: 《计算机应用研究》 2010年第6期2080-2083,共4页
摘 要: 深入研究了蚁群优化算法(ACO)的路径搜索及参数控制策略,分析了其存在的缺陷。为了提高ACO算法的解题能力,提出一种新型信息素更新策略(PACS),然后将PACS算法与其他蚁群算法分别应用于旅行商问题(TSP)进行仿真实验。仿真结果表明,PACS算法具有优良的全局优化性能,可抑制算法过早收敛于次优解,有效防止了停滞现象,收敛速度也大大加快。 This paper studied the routes searching strategy and the pheromone updating strategy of ant colony optimization algorithm (ACO) and ananlyzed the limitations of these strategies. To increase the performance of ACO, proposed the ant colony system based on improved pheromone updated strategy (PACS). Gave an example of traveling salesman problem, which was simulated by using basic ACO and PACS. The simulation results show that PACS has excellent global optimization properties and faster convergence speed, and it can avoid premature convergence of ACO.
领 域: [自动化与计算机技术] [自动化与计算机技术]