机构地区: 华南师范大学数学科学学院
出 处: 《数学学报(中文版)》 2010年第3期443-454,共12页
摘 要: 应用Thue-Siegel方法,我们证明:对任意正整数a,b,不定方程aX^4-bY^2=1至多只有两组正整数解(X,Y),这证实了Walsh提的一个猜测. In this paper,by applying the hypergeometric method of Thue and Siegel, we prove that for any positive integers a,b,the equation aX^4—bY^2 = 1 has at most two solutions in positive integers,which confirms a conjecture posed by Walsh.