机构地区: 中南大学数学与统计学院
出 处: 《应用数学》 2010年第2期244-251,共8页
摘 要: 本文研究了具有负顾客和抢占反馈机制的非空竭服务随机休假的M/G/1排队系统.正顾客以某种概率抢占和反馈.负顾客移除一个正在接受服务的正顾客.通过构造一个具有吸收态的马尔可夫链求得了系统稳态存在的充分必要条件.利用补充变量法求得了在稳态下系统队长的概率母函数,进而计算出稳态下系统的平均队长.最后我们还给出了一个数值实例. In this paper,we consider an M/G/1 queue with negative customers,preeptive resume and random vacation on non-exhaustive service.Positive customers may preenptive resume service and feedback with some probability,Negative customers remove the customer being in service.The necessary and sufficient condition for the system stability is obtained by constructing a Markov chain with a absorb state.The steady-state probability generation functions of the number of customer in the system are derived with the method of supplementary variables,then the mean number of customers in the system is obtained.At last we give a numerical example.