机构地区: 华南理工大学电子与信息学院电子与通信工程系
出 处: 《控制理论与应用》 1998年第4期494-500,共7页
摘 要: 本文介绍了一种多输入非线性动态系统辨识算法,基于该算法的非线性辨识系统成功用于局部地区短时暴雨的预报.在这个系统中我们采用一种小波网络来追踪非线性系统的动态性,用一种基于小波逼近的非参数估计方法用于系统的状态空间模型的辨识中.从实验结果可看出,与传统的神经网络方法相比,该系统在速度、可靠性以及精确度上都有了很大的提高. In this paper,algorithms for the identification of a nonlinear multi-input dynamical system are developed. These algorithms are successfully used for the applications including a local short term rain storm forecasting. A wavelet network structure is applied to track the dynamics of a nonlinear system and used for identifying a state space model of the system. When comparing with traditional artificial neural network (ANN) approaches, we have shown that this wavelet approach offers significant improvement in terms of learning speed,reliability and accuracy.