机构地区: 上海电力学院数理学院
出 处: 《南昌大学学报(理科版)》 2009年第3期227-231,共5页
摘 要: 通过构造某个乘积流形中的一个子流形Q及Q上外微分式环中某个理想的一组生成元,利用[4]的主要工作,在这里证明了理想是d-封闭的。从而确定了一个3维积分子流形S.并由此给出了空间形式中一类极小曲面的度量特征的一个独特的构造性的证明。其中关于丛映射的证明对一般情形也适用,从而弥补了[3]中该部分的缺陷。 By constructing a submanifold Q of some product manifold and a set of ideal generators for some ideal in the ring of exterior differential forms on Q ; and by making use of the main works in [ 4 ], we proved that the ideal is d - closed. Thus it determines a 3 - dimensional submanifold S, and thereout we give a unique and constructive proof for the metric characterizations of a sort of minimal surfaces in space forms, therein the proof for the bundie maps also applies to general case, and it also makes up the defect of the corresponding part in [ 3 ].