帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

基于Q学习的互联电网动态最优CPS控制
Q-learning Based Dynamic Optimal CPS Control Methodology for Interconnected Power Systems

作  者: ; ; ;

机构地区: 华南理工大学电力学院

出  处: 《中国电机工程学报》 2009年第19期13-19,共7页

摘  要: 控制性能标准(control performance standard,CPS)下互联电网自动发电控制(automatic generation control,AGC)系统是一个典型的不确定随机系统,应用基于马尔可夫决策过程(Markov decision process,MDP)理论的Q学习算法可有效地实现控制策略的在线学习和动态优化决策。将CPS值作为包含AGC的电力系统"环境"所给的"奖励",依靠Q值函数与CPS控制动作形成的闭环反馈结构进行交互式学习,学习目标为使CPS动作从环境中获得的长期积累奖励值最大。提出一种实用的半监督群体预学习方法,解决了Q学习控制器在预学习试错阶段的系统镇定和快速收敛问题。仿真研究表明,引入基于Q学习的CPS控制可显著增强整个AGC系统的鲁棒性和适应性,有效提高了CPS的考核合格率。 The NERC's control performance standard (CPS) based automatic generation control (AGC) problem is a stochastic multistage decision problem, which can be suitably modeled as a reinforcement learning (RL) problem based on Markov decision process (MDP) theory. The paper chose the Q-learning method as the RL algorithm regarding the CPS values as the rewards from the interconnected power systems. By regulating a closed-loop CPS control rule to maximize the total reward in the procedure of on-line learning, the optimal CPS control strategy can be gradually obtained. An applicable semi-supervisory pre-leaming method was introduced to enhance the stability and convergence ability of Q-learning controllers. Two cases show that the proposed controllers can obviously enhance the robustness and adaptability of AGC systems while the CPS compliances are ensured.

关 键 词: 自动发电控制 学习 马尔可夫决策过程 控制性能标准 最优控制

领  域: [电气工程]

相关作者

作者 屈少青
作者 张有松

相关机构对象

机构 华南理工大学
机构 东莞理工学院
机构 广东技术师范学院财经系
机构 广州铁路职业技术学院

相关领域作者

作者 王珺
作者 刘洋
作者 张光宇
作者 叶飞
作者 周永务