机构地区: 中山大学工学院应用力学与工程系
出 处: 《应用数学和力学》 2009年第1期21-29,共9页
摘 要: 基于开闭环控制的思想,设计了一类由外激力与线性误差反馈组成的开闭环控制器,研究了Mathieu-Duffing振子混沌轨道至任意目标周期轨道的控制问题;同时,利用Liapunov稳定性理论与二阶常微分方程初值问题的一个比较定理,证明了上述开闭环控制夹带盆(basin of entrainment)的全局性.最后,利用数值模拟,验证了理论结果的正确性. Utilizing the idea of the open-plus-closed-loop(OPCL) control, a controller which is composed of an external excitation and linear feedback was designed to entrain the chaotic trajectories of Mathieu-Duffing oscillator to its periodic and higher periodic orbits. The global basin of entrainment of the open-plus-closed-loop control was proved by combining Liapunov stability theory with a comparative theorem of initial value problems for second-order ordinary differential equations. Numerical simulations were performed to demonstrate the theoretical results.