机构地区: 华南理工大学
出 处: 《交通与计算机》 2008年第4期8-10,共3页
摘 要: 数据融合技术是路径诱导过程中的一项关键技术。文中以数据融合技术中的高阶神经网络技术的研究为主,通过对交通路网的分析,建立模型,准确地预测交通有关数据信息。通过应用高阶流体神经网络技术,解决复杂的交通网络计算问题,分别得出行驶距离最短、运行时间最少、拥挤程度最低、道路质量最好4种行驶路线的优化数据,以满足用户的要求。 Data fusion is a key technique in route guiding. This study focused on high-order neural network technology in data fusion technology. Through the analysis of transport network, and models building, accurate prediction of traffic information was achieved. Through high-end fluid neural network technology, complex computing problems of the transport network were solved. The optimal data of four best routes were obtained, including the shortest distance, the least running time, the minimum level of congestion, and the best road quality, in order to meet the users' requirements.