机构地区: 中国人民大学公共管理学院
出 处: 《上海交通大学学报》 2008年第6期896-899,共4页
摘 要: 以出行总时间最小为目标,建立了在一定土地及人口约束下的土地利用形态和交通结构的组合优化模型,在此基础上,针对传统算法的局限性,提出一种新的混合遗传算法.该算法融合了遗传算法、模拟退火算法和动态惩罚函数法的优势,并在求解过程中引入Gray编码和非均匀变异算子.计算实例表明,该算法能够克服传统遗传算法容易过早收敛以及传统模拟退火算法全局搜索能力不足的缺陷,具有较高的运算效率和求解质量. An optimization model for urban land use pattern and transportation structure was established, which can minimize the total travel time under certain restrictions of land and population. Then, a new hybrid genetic algorithm was developed to solve the model. The hybrid genetic algorithm combines the traditional genetic algorithm with the simulated annealing algorithm, in which the dynamic penalty function, the Gray coding method, and the non-uniform mutation operator are introduced to increase the algorithm's efficiency. The calculation example shows that the hybrid genetic algorithm overcomes the shortcomings of traditional genetic algorithm and simulated annealing algorithm, and can obtain high-quality results with high efficiency.