机构地区: 华南理工大学计算机科学与工程学院
出 处: 《计算机应用》 2008年第4期963-965,共3页
摘 要: 为了有效简化稠密采样点模型,提出了一个基于均值漂移(mean-shift)聚类的点模型简化方法。通过mean-shift迭代过程,计算点模型中点对应的局部模式点,即模态点。利用模态点代替聚集在其周围的数据点,实现对模型的简化。实验结果表明该算法能有效减少稠密采样点模型的点数,且简化速度较快,简化模型能很好地保持原始模型的几何形状。 To efficiently simplify the densely sampled point model, a point sample data reduction method was proposed based on the mean-shift clustering algorithm, Local mode centroids were calculated by mean-shift iterative process, These mode centroids substituting for ambient data points were used to simplify the model. Experiment results show that the algorithm can effectively simplify the densely sampled point model, the reduction speed is fast, and the simplified model can preserve the original geometric shape.
领 域: [自动化与计算机技术] [自动化与计算机技术]