机构地区: 南华大学机械工程学院
出 处: 《噪声与振动控制》 2007年第6期73-75,79,共4页
摘 要: 隐Markov模型(HMM)已经证明是学习动态时间序列的概率模型的最广泛应用的工具之一,它可以使用一个隐变量来模拟系统的动态行为的变化。核动力旋转机械升速过程具有信息量大、信号非平稳、重复再现性不佳等特点,HMM很适合处理此类信号。将HMM引人到核动力旋转机械的故障诊断中,提出了一种基于HMM的故障诊断方法。 Hidden Markov models ( HMM ) have learning probability models of dynamics time series. proven to be one of the most widely used tools for HMM can model dynamical behavior variation existing in the system through a latent variable. There are a large amount non-statistical, worse reappearance signal in the nuclear power rotor run-up process. HMM is suitable to deal with these signals. A new fault diagnosis strategy based HMM was proposed in this paper.
关 键 词: 振动与波 隐 模型 核动力旋转机械 故障诊断 动态时间序列
领 域: [自动化与计算机技术] [自动化与计算机技术]