机构地区: 西安电子科技大学通信工程学院综合业务网理论与关键技术国家重点实验室
出 处: 《北京邮电大学学报》 2007年第5期55-57,共3页
摘 要: 借助覆盖向量刻画了代数免疫布尔函数的特征,给出布尔函数代数免疫不大于某确定值的充要条件.该结果可用来研究正规布尔函数的代数免疫,证明了k-正规布尔函数的代数免疫的上界是n-k. A characterization of the algebraic immune Boolean functions is presented by means of the covering vectors. A sufficient and necessary condition is given that the algebraic immunity of a Boolean function is not more than a fixed value. This result is used to describe a characterization of the algebraic immune of normal Boolean functions. It is also shown that the upper bound of the algebraic immunity of k-normal Boolean functions is n-k.