机构地区: 中山大学地球科学系
出 处: 《光谱学与光谱分析》 2007年第6期1066-1070,共5页
摘 要: 天然金刚石自中心至边缘的显微傅里叶变换红外光谱研究表明:氮和氢在金刚石中的分布是不均匀的,这说明金刚石在整个生长过程中的物质环境是有差异的;中心至边缘的含氮总量、C—H键含量的总体降低趋势表明金刚石的生长过程是一个氮、氢的消耗过程,而中部的升高变化说明金刚石生长环境中存在氮、氢的补充,但氮补充得比氢更早一些。据此,可以将金刚石的生长过程划分为早期成核与长大、中期长大及末期长大三个阶段,其中早期和末期是氮和氢的消耗阶段,中期需要进行氮和氢的补充,且氮应该更早补充。氢对金刚石的生长是有利的,氢和氮不是以氮氢化合物的形式存在于金刚石生长的物质环境中,这暗示着在高温高压合成金刚石中欲引入氢,应当避免氮氢化合物的形成。 From the center to the rim of natural diamond there are differences in nitrogen and C-H bond contents, suggesting that diamond was formed under varying substance conditions. Both the nitrogen and C-H bond contents tend to decrease from the center to the rim as a whole, indicaing that nitrogen and hydrogen are expended little by little during the formation of diamond. But in the middle area of the sample both the nitrogen and C-H bond contents have a tendency to increase. This implies that nitrogen and hydrogen are added into the environment of diamond formation, meanwhile nitrogen is added earlier. So the procedure of diamond formation may be divided into three stages, namely nucleation and growth in the early stage, growth in the middle stage and in the late stage. In the early and late stages nitrogen and hydrogen are consumed in the environment of diamond formation. In the middle stage nitrogen and hydrogen must be replenished for the growth of diamond, and nitrogen should be replenished earlier than hydrogen. Hydrogen is useful to the nucleation and growth of diamond. During the formation of diamond the compounds of nitrogen and hydrogen do not exist. So we must avoid the formation of compounds of nitrogen and hydrogen for the nucleation and growth of diamond if we plan to introduce hydrogen to the synthesis of diamond at high temperature and high pressure (HPHT). Implanted hydrogen in graphite for the HPHT synthesis of diamond is a good choice.