帮助 本站公告
您现在所在的位置:网站首页 > 知识中心 > 文献详情
文献详细Journal detailed

关于平均跟踪性、链可迁性与伪轨跟踪性
Research on Average Shadowing Property and Pseudo-orbit Tracing Property

作  者: ;

机构地区: 广东海洋大学理学院

出  处: 《太原理工大学学报》 2007年第3期278-282,共5页

摘  要: 设(X,d)是紧致度量空间,f:X→X是连续的,n为任一给定的正整数,证明了:f是链可迁的当且仅当fn是链可迁的;若同胚f是Lipschitz映射,则f有平均跟踪性当且仅当fn有平均跟踪性。设f是个同胚映射,得到了如下结果:若f有POTP且是distal的,则fn不具有平均跟踪性;若f有平均跟踪性且是等度连续的,则fn是极小的;若f是distal的且是链可迁的,则fn不具有POTP;f是distal的当且仅当fn是distal的。同时,还给出了例子:设S={0,1,…,k-1},σ∶∑(S)→∑(S)(resp.σ∶∑+(S)→∑+(S))为符号空间上的移位自映射,则nσ(resp.nσ+)有平均跟踪性. Let (X,d) be a compact metric space and f:X→X be continuous. And let n be a given positive integer. In this paper,the following statements were proved: f is chaintransitive if and only if f^n is chaintransitive;if a homeomorphismf is a Lipschitz map,then f has the average shadowing property if and only if f^n has the average shadowing property. Let f be a homeomorphism,the following statements were obtained, if f is distal and has POTP,then f^n does not have the average shadowing property;if f is equicontinuous and has the average shadowing property, then f^n is minimal; let f: X→X be distal and chaintransitive, then f^n does not have POTP; f is distal if and only if f^n is distal. At the same time, the following example was given: Let σ:∑(S) → (S)(resp.)σ: ∑+ (S)→∑+ (S)) be the shift map on the symbolic space and S={0,1,…, k- 1}. then σ(resp, σ+ ) has the average shadowing property if and only if σ^n (resp. σ+^n ) has the average shadowing property.

关 键 词: 平均跟踪 伪轨跟踪 极限跟踪 跟踪 链可迁 同胚

领  域: [理学] [理学]

相关作者

相关机构对象

相关领域作者

作者 刘广平
作者 彭刚
作者 杨科
作者 陈艺云
作者 崔淑慧