机构地区: 广州大学数学与信息科学学院
出 处: 《广州大学学报(自然科学版)》 2006年第6期7-10,共4页
摘 要: 研究函数fa(z)=zexp(z+a+πi)的动力学,证明了下列结果:当a<0时,Fatou集F(fa)是一个完全不变吸引域;存在an>0,使得fan具有2n阶超吸引域,而当a>an时,fa没有2n阶超吸引域;an单调增加趋于无穷大;集合B0={aRJ(fa)=C}是一个无界集. In this paper , dynamics of the function fa (z) = z exp (z + a + πi) is studied. The following results have been proved. The Fatou set f(fa) is a completely invariant absorbing domain for a 〈 0. There exists an 〉 0 such that fan has super absorbing domains of 2n-order, but fa has no super absorbing domains of 2n-order for a 〉 an. Furthermore, a, is monotone increasing toward infinity. The set B0 = {a∈R|J(fa) = C} is unbounded.